2007 - 04

J Thromb Thrombolysis. 2007 Apr;23(2):129-33. Epub 2007 Jan 13.

Tissue factor and nitric oxide: a controversial relationship!

Dusse LM, Cooper AJ, Lwaleed BA. University of Southampton, Southampton, UK.

Tissue factor (TF) is the primary physiological initiator of blood coagulation. TF has a high-affinity for factor (F) VII resulting in the formation of (TF:FVII:FVIIa) bimolecular complex which, in the presence of Ca(2+), increases the enzymatic activity of FVIIa towards its natural substrates, FIX and FX, generating their active forms FIXa and FXa, respectively. This eventually leads to thrombin generation and a fibrin clot formation. Up-regulation of TF in injured blood vessels and atherosclerotic plaque can lead to undesirable vascular thrombosis. Nitric oxide (NO) is a free radical synthesized from L-arginine and molecular oxygen by nitric oxide synthases (NOS). NO participates in diverse physiological and pathophysiological process as an intra or extracellular messenger. A relationship between TF and NO has been proposed. Thus, models of TF regulation by NO has been studied in different cells and experimental animal models, but the results have been conflicting. The premise that NO donors can prevent TF expression in vivo has provided the foundation for a broad field of pharmacotherapeutics in vascular medicine. A new class of drugs combining a statin (inhibitors of coenzyme A reductase) with an NO-donating moiety has been described. The resulting drug, nitrostatin, has been suggested to increase the antithrombotic effects of native statin. However, it is questionable if NO release from these drugs had any significant role on TF inhibition. In summary, care must be taken in drawing conclusions about the relationship between NO and TF. Interpretation of NO studies must take several factors into consideration, including NO bioavailability, its half-life and inactivation, as well as the cell type and experimental model used.



Atherosclerosis. 2007 Apr;191(2):272-5. Epub 2006 Jun 21.

Aspirin is a substrate for paraoxonase-like activity: implications in atherosclerosis.

Santanam N, Parthasarathy S. Department of Pathology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA.

Paraoxonase 1 (PON 1) is an enzyme that is promiscuous in its ability to hydrolyze various types of substrates. It hydrolyzes aryl esters, phosphate esters, lactones, and reduces lipid peroxides to hydroxides. Aspirin is an aryl ester with a short plasma half life. We hypothesized that aspirin would be effectively hydrolyzed by PON 1 and many of its anti-atherogenic effects, at least in part, could be accounted for by its antioxidant product, salicylic acid. In this study, we determined the ability of human plasma and PON 1-rich HDL to hydrolyze acetyl ester of salicylic acid (aspirin). The ability of aspirin to compete for the hydrolysis of paraoxon and p-nitrophenylacetate was determined. In addition, nitrated aspirin was synthesized and tested directly for hydrolysis. Aspirin competed for the hydrolysis of paraoxon and p-nitrophenylacetate by HDL in a dose-dependent manner. Human plasma and HDL were also able to hydrolyse nitroaspirin and aspirin and release nitrosalicylic acid and salicylic acid, respectively. These findings suggest that salicylic acid might be generated in the plasma from aspirin. The ability of long-term treatment with aspirin to retard atherosclerosis might be dependent on the generation of free salicylic acid, a scavenger of free radicals.



J Ocul Pharmacol Ther. 2007 Apr;23(2):188-95.

Susceptibility of the ocular lens to nitric oxide: implications in cataractogenesis.

Varma SD, Hegde KR. Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA.

Oxides of nitrogen, such as nitric oxide (NO), are now biologically referred to as reactive nitrogen species. The generation of NO gives rise to several other reactive species, such as NO+, NO-, NO2, N2O3, and ONOO- and so forth, which are all capable of inflicting tissue damage. Indeed, NO generation is known to be associated with retinal degeneration and glaucoma. Its level has also been found to increase in the aqueous and vitreous humors in diabetes. We hypothesize that such an increase would have a detrimental effect on the biochemistry and metabolism of tissues, including the lens, bathed by the aqueous containing elevated levels of NO. The primary aim of our investigations was, therefore, to examine the susceptibility of the lens to damage by NO in vitro in the presence of nitroaspirin, a novel NO donating agent. The extent of physiologic damage to the lens was initially assessed by determining the integrity of its active transport mechanism. The overall status of tissue metabolism was determined by measuring the adenosine triphosphate (ATP) levels. The levels of glutathione (GSH) and glutathione disulfide, reflecting the status of its antioxidant reserve, were also determined. That NO is indeed deleterious to the lens was apparent by the inhibition of the active transport of Rb(+). This was associated with a substantial decrease in the contents of ATP and GSH, the decrease in the latter directly suggesting that the NO effects are caused by oxidative stress. That the effects are caused by NO generated from nitroaspirin was proven by a substantial increase in NO level in the medium during incubation of the lenses with nitroaspirin, as compared to the controls. The results, therefore, were highly suggestive of a contribution of the oxides of nitrogen in cataract formation associated with diabetes and other aging diseases.



Eur J Pharmacol. 2007 Apr 30;561(1-3):220-5. Epub 2007 Feb 1.

Effect of aspirin, paracetamol and their nitric oxide donating derivatives on exudate cytokine and PGE2 production in zymosan-induced air pouch inflammation in rats.

Mamuk S, Melli M. Ankara University, School of Medicine, Department of Pharmacology and Clinical Pharmacology, Morfoloji Binasi, Sihhiye 06100, Ankara, Turkey.

Effects of different doses of aspirin, compared to equimolar doses of nitric oxide (NO)-donating aspirin (NCX 4016), and of a single dose of paracetamol, compared to an equimolar dose of NO-donating paracetamol (NCX 701) were investigated in acute zymosan-induced air pouch inflammation in rats. Treatments were administered by orogastric route, and interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha) and prostaglandin E(2) (PGE(2)) levels in the exudates were analysed 4 h after zymosan injection by enzyme immunoassay (EIA). Aspirin, at 10, 30 and 100 mg/kg doses, increased IL-1beta levels in exudates, however, only the highest dose lead to a significant increase when compared to control, whereas a significant increase in TNF-alpha level was observed at all doses tested. NCX 4016, at equimolar doses for aspirin, i.e., 18.6, 55.8 and 186 mg/kg, respectively, did not cause any changes in exudate IL-1beta or TNF-alpha levels. These effects were significantly different, when aspirin was compared with the corresponding NCX 4016 group. Nevertheless, the ability of aspirin and NCX 4016 to inhibit PGE(2) synthesis in the exudate where comparable. Although paracetamol significantly increased exudate TNF-alpha level compared to the control group and NCX 701 group, neither paracetamol, nor NCX701 treatments changed the levels of exudate IL-1beta significantly. As expected, paracetamol and NCX 701 showed poor PGE(2) inhibition. At high doses, aspirin and NCX 4016
decreased the number of polymorphonuclear leukocytes in the exudate. However, this inhibition was not significantly different from the control group. Paracetamol and NO-paracetamol did not cause any change in the number of polymorphonuclear leukocytes in exudate. These results indicated that aspirin and NCX 4016 possessed different effects on cytokine production or release, despite the fact that both drugs inhibited the synthesis of PGE(2) in a similar way. Unlike paracetamol, which increased exudate TNF-alpha level, NCX 701 had no effect on TNF-alpha level in the exudates.