2000 - 11

J Immunol. 2000 Nov 1;165(9):5245-54.

IL-1 beta converting enzyme is a target for nitric oxide-releasing aspirin: new insights in the antiinflammatory mechanism of nitric oxide-releasing nonsteroidal antiinflammatory drugs.

Fiorucci S, Santucci L, Cirino G, Mencarelli A, Familiari L, Soldato PD, Morelli A. Dipartimento di Medicina Clinica e Sperimentale, Clinica di Gastroenterologia ed patologia, Universita degli Studi di Perugia.

Caspase-1, the IL-1beta converting enzyme (ICE), is required for intracellular processing/maturation of IL-1beta and IL-18. NO releasing nonsteroidal antiinflammatory drugs (NSAIDs) are a new class of NSAID derivatives that spare the gastric mucosa. Here, we tested the hypothesis that NCX-4016, a NO-aspirin derivative, inhibits proinflammatory cytokine release from endotoxin (LPS)-challenged monocytes. Our results demonstrated that exposing LPS-stimulated human monocytes to NCX-4016 resulted in a 40-80% inhibition of IL-1beta, IL-8, IL-12, IL-18, IFN-gamma, and TNF-alpha release with an EC(50) of 10-20 microM for IL-1beta and IL-18. Incubating LPS-primed monocytes with NCX-4016 resulted in intracellular NO formation as assessed by measuring nitrite/nitrate, intracellular cGMP concentration, and intracellular NO formation. Exposing LPS-stimulated monocytes to aspirin or celecoxib caused a 90% inhibition of prostaglandin E(2) generation but had no effect on cytokine release. NCX-4016, similar to the NO donor S-nitroso-N-acetyl-D-L-penicillamine, inhibited caspase-1 activity with an EC(50) of approximately 20 microM. The inhibition of caspase-1 by NCX-4016 was reversible by the addition of DTT, which is consistent with S-nitrosylation as the mechanism of caspase-1 inhibition. NCX-4016, but not aspirin, prevented ICE activation as measured by assessing the release of ICE p20 subunit. IL-18 immunoneutralization resulted in a 60-80% reduction of IL-1beta, IL-8, IFN-gamma, and TNF-alpha release from LPS-stimulated monocytes. Taken together, these data indicate that incubating human monocytes with NCX-4016 causes intracellular NO formation and suppresses IL-1beta and IL-18 processing by inhibiting caspase-1 activity. Caspase-1 inhibition is a new, cycloxygenase-independent antiinflammatory mechanism of NO-aspirin.