2006 - 06

Br J Pharmacol. 2006 Jun;148(4):517-26. Epub 2006 May 15.

Mechanism of action of novel NO-releasing furoxan derivatives of aspirin in human platelets.

Turnbull CM, Cena C, Fruttero R, Gasco A, Rossi AG, Megson IL. Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh.

Incorporation of a nitric oxide (NO)-releasing moiety in aspirin can overcome its gastric side effects.We investigated the NO-release patterns and antiplatelet effects of novel furoxan derivatives of aspirin (B8 and B7) in comparison to existing antiplatelet agents. Cyclooxygenase (COX) activity was investigated in purified enzyme using an electron paramagnetic resonance-based technique. Concentration-response curves for antiplatelet agents +/- the soluble guanylate cyclase inhibitor, ODQ (50 microM) were generated in platelet-rich plasma (PRP) and washed platelets (WP) activated with collagen using turbidometric aggregometry. NO was detected using an isolated NO electrode. The furoxan derivatives of aspirin (B8, B7) and their NO-free furazan equivalents (B16, B15; all 100 microM) significantly inhibited COX activity (P < 0.01; n = 6) in vitro and caused aspirin-independent, cGMP-dependent inhibition of collagen-induced platelet aggregation in WP. B8 was more potent than B7 (PRP IC(50) = 0.62 +/- 0.1 microM for B8; 400 +/- 89 microM for B7; P < 0.0001. WP IC(50)s = 0.6 +/- 0.1 and 62 +/- 10 microM, respectively). The NO-free furazan counterparts were less potent antiplatelet agents (WP IC(50)s = 54 +/- 3 microM and 62 +/- 10 microM, respectively; P < 0.0001, B8 vs B16). Of the hybrids investigated, only B8 retained antiplatelet activity in PRP.NO release from furoxan-aspirin hybrids was undetectable in buffer alone, but was accelerated in the presence of either plasma or plasma components, albumin (4%), glutathione (GSH; 3 microM) and ascorbate (50 microM), the effects of which were additive for B7 but not B8. NO generation from furoxans was greatly enhanced by platelet extract, an effect that could largely be explained by the synergistic effect of intracellular concentrations of GSH (3 mM) and ascorbate (1 mM). We conclude that the decomposition of furoxan-aspirin hybrids to generate biologically active NO is catalysed by endogenous agents which may instil a potential for primarily intracellular delivery of NO. The blunting of the aspirin effects of furoxan hybrids is likely to be due to loss of the acetyl moiety in plasma; the observed antiplatelet effects are thereby primarily mediated via NO release. Compounds of this class might represent a novel means of inhibiting platelet aggregation by a combination of NO generation and COX inhibition.



Mol Cancer Ther. 2006 Jun;5(6):1530-8.

Nitric oxide-releasing aspirin and indomethacin are potent inhibitors against colon cancer in azoxymethane-treated rats: effects on molecular targets.

Rao CV, Reddy BS, Steele VE, Wang CX, Liu X, Ouyang N, Patlolla JM, Simi B, Kopelovich L, Rigas B. Department of Medicine, Hem-Onc Section, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.

Nitric oxide-releasing nonsteroidal anti-inflammatory drugs (NO-NSAID) are promising chemoprevention agents; unlike conventional NSAIDs, they seem free of appreciable adverse effects, while they retain beneficial activities of their parent compounds. Their effect on colon carcinogenesis using carcinoma formation as an end point is unknown. We assessed the chemopreventive properties of NO-indomethacin (NCX 530) and NO-aspirin (NCX 4016) against azoxymethane-induced colon cancer. Seven-week-old male F344 rats were fed control diet, and 1 week later, rats received two weekly s.c. injections of azoxymethane (15 mg/kg body weight). Two weeks after azoxymethane treatment, rats (48 per group) were fed experimental diets containing NO-indomethacin (0, 40, or 80 ppm), or NO-aspirin (1,500 or 3,000 ppm), representing 40% and 80% of the maximum tolerated dose. All rats were killed 48 weeks after azoxymethane treatment and assessed for colon tumor efficacy and molecular changes in colonic tumors and normally appearing colonic mucosa of different dietary groups. Our results suggest that NO-indomethacin at 40 and 80 ppm and NO-aspirin at 3,000 ppm significantly suppressed both tumor incidence (P < 0.01) and multiplicity (P < 0.001). The degree of inhibition was more pronounced with NO-indomethacin at both dose levels (72% and 76% inhibition) than with NO-aspirin (43% and 67%). NO-indomethacin at 40 and 80 ppm and NO-aspirin at 3,000 ppm significantly inhibited the colon tumors' (P < 0.01 to P < 0.001) total cyclooxygenase (COX), including COX-2 activity (52-75% inhibition) and formation of prostaglandin E2 (PGE2), PGF2alpha, and 6-keto-PGF1alpha, and TxB2 from arachidonic acid (53-77% inhibition). Nitric oxide synthase 2 (NOS-2) activity and beta-catenin expression were suppressed in animals given NO-NSAID. In colonic crypts and tumors of animals fed these two NO-NSAIDs, there was a significant decrease in proliferating cell nuclear antigen labeling when compared with animals fed the control diet. The results of this study provide strong evidence that NO-NSAIDs possess strong inhibitory effect against colon carcinogenesis; their effect is associated with suppression of COX and NOS-2 activities and beta-catenin levels in colon tumors. These results pave the way for the rational design of human clinical trials.